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ABSTRACT

Sequential recommendation aims to model dynamic user behavior
from historical interactions. Existing methods rely on either explicit
item IDs or general textual features for sequence modeling to un-
derstand user preferences. While promising, these approaches still
struggle to model cold-start items or transfer knowledge to new
datasets. In this paper, we propose to model user preferences and
item features as language representations that can be generalized to
new items and datasets. To this end, we present a novel framework,
named Recformer, which effectively learns language representa-
tions for sequential recommendation. Specifically, we propose to
formulate an item as a “sentence” (word sequence) by flattening
item key-value attributes described by text so that an item sequence
for a user becomes a sequence of sentences. For recommendation,
Recformer is trained to understand the “sentence” sequence and
retrieve the next “sentence”. To encode item sequences, we design
a bi-directional Transformer similar to the model Longformer but
with different embedding layers for sequential recommendation.
For effective representation learning, we propose novel pretraining
and finetuning methods which combine language understanding
and recommendation tasks. Therefore, Recformer can effectively
recommend the next item based on language representations. Ex-
tensive experiments conducted on six datasets demonstrate the
effectiveness of Recformer for sequential recommendation, espe-
cially in low-resource and cold-start settings.
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1 INTRODUCTION

Sequential recommender systems model historical user interactions
as temporally-ordered sequences to recommend potential items that
users are interested in. Sequential recommenders [11, 14, 25, 27]
can capture both short-term and long-term preferences of users
and hence are widely used in different recommendation scenarios.

Various methods have been proposed to improve the perfor-
mance of sequential recommendation, including Markov Chains [9,
25], RNN/CNN models [11, 17, 28, 34] and self-attentive models [14,
19, 27]. Traditional sequential recommendation models convert
items into IDs and create item embedding tables for encoding. Item
embeddings are learned from sequences of user interactions. To en-
rich item features, some approaches [4, 20, 37, 38] incorporate item
contexts such as item textual information or categorical features
into ID embeddings. While ID-based methods are promising, they
struggle to understand cold-start items or conduct cross-domain
recommendations where models are trained and then applied to
different recommendation scenarios. Item-specific IDs prevent mod-
els from learning transferable knowledge from training data for
cold-start items and new datasets. As a result, item IDs limit the
performance of sequential recommenders on cold-start items and
we have to re-train a sequential recommender for continually added
new items. Therefore, transferable recommenders can benefit both
cold-start items and new-domain datasets.

To develop transferable recommender systems, previous studies
usually assume shared information such as overlapping users/items [13,
26, 39] and common features [29] is available and then reduce
the gap between source and target domains by learning either
semantic mappings [39] or transferable components [16]. Such
assumptions are rarely true in real applications because items in
different domains (e.g., Laptops and T-shirts) usually contain dif-
ferent features for recommendation. Therefore, to have effective
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Figure 1: Input data comparison between item ID sequences

for traditional sequential recommendation and key-value

attribute pair sequences used in Recformer.

cross-domain transfer, recent works [7, 12] leverage the gener-
ality of natural language texts (e.g., titles, descriptions of items)
for common knowledge in different domains. The basic idea is to
employ pre-trained language models such as BERT [6] to obtain
text representations and then learn the transformation from text
representations to item representations. The knowledge of the trans-
formation can be transferred across different domains and shows
promising performance. However, such frameworks of learning
transformation from language to items have several limitations:
(1) Pre-trained language models are usually trained on a general
language corpus (e.g., Wikipedia) serving natural language tasks
that have a different language domain from item texts (e.g., con-
catenation of item attributes), hence text representations from pre-
trained language models for items are usually sub-optimal. (2) Text
representations from pre-trained language models are not able to
learn the importance of different item attributes and only provide
coarse-grained (sentence-level) textual features but cannot learn
fine-grained (word-level) user preferences for recommendations
(e.g., find the same color in recent interactions for clothing recom-
mendations). (3) Due to the independent training of pre-trained
language models (by language understanding tasks, e.g., Masked
Language Modeling) and transformation models (by recommenda-
tion tasks, e.g., next item prediction), the potential ability of models
to understand language for recommendations has not been fully
developed (by joint training).

With the above limitations in mind, we aim to unify the frame-
works of natural language understanding and recommendations in
an ID-free sequential recommendation paradigm. The pre-trained
language models [6, 15, 23, 24] benefit various downstream natural
language processing tasks due to their transferable knowledge from
pre-training. The basic idea of this paper is to use the generality of
language models through joint training of language understanding
and sequential recommendations. To this end, there are three major
challenges to be solved. First, previous text-based methods [7, 12]
usually have their specific item texts (e.g., item descriptions, con-
catenation of item attributes). Instead of specific data types, we
need to find a universal input data format of items for language
models that is flexible enough to different kinds of textual item
information. Second, it is not clear how to model languages and
sequential transitions of items in one framework. Existing language
models are not able to incorporate sequential patterns of items and
cannot learn the alignment between items and item texts. Third, a

Title 2020 MacBook Air 
Laptop M1 Chip

Brand Apple

Color Gold

Key-value 
attribute pairs

Title 2020 MacBook Air Laptop M1 Chip Brand Apple Color GoldItem “sentence”

Flatten

Figure 2: Model input construction. Flatten key-value at-

tribute pairs into an item “sentence”.

training and inference framework is necessary to bridge the gap
between natural languages and recommendations like how to effi-
ciently rank items based on language models without trained item
embeddings.

To address the above problems, we propose Recformer, a frame-
work that can learn language representations for sequential recom-
mendation. Overall, our approach takes a text sequence of historical
items as input and predicts the next item based on language un-
derstanding. Specifically, as shown in Figure 1, we first formulate
an item as key-value attribute pairs which can include any textual
information such as the title, color, brand of an item. Different
items can include different attributes as item texts. Then, to en-
code a sequence of key-value attribute pairs, we propose a novel
bi-directional Transformer [30] based on Longformer structure [2]
but with different embeddings for item texts to learn item sequential
patterns. Finally, to effectively learn language representations for
recommendation, we design the learning framework for the model
including pre-training, finetuning and inference processes. Based
on the above methods, Recformer can effectively recommend the
next items based on item text representations. Furthermore, the
knowledge learned from training can be transferred to cold-start
items or a new recommendation scenario.

To evaluate Recformer, we conduct extensive experiments on
real-world datasets from different domains. Experimental results
show that our method can achieve 15.83% and 39.78% (NDCG@10)
performance improvements under fully-supervised and zero-shot
sequential recommendation settings respectively.1 Our contribu-
tions in this paper can be summarized as follows:

• We formulate items as key-value attribute pairs for the ID-
free sequential recommendation and propose a novel bi-
directional Transformer structure to encode sequences of
key-value pairs.
• We design the learning framework that helps the model
learn users’ preferences and then recommend items based
on language representations and transfer knowledge into
different recommendation domains and cold-start items.
• Extensive experiments are conducted to show the effective-
ness of our method. Results show that Recformer outper-
forms baselines for sequential recommendation and largely
improves knowledge transfer as shown by zero-shot and
cold-start settings.
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Figure 3: The overall framework of Recformer.

2 METHODOLOGY

In this section, we present Recformer which can learn language
representations for sequential recommendation and effectively
transfer and generalize to new recommendation scenarios.

2.1 Problem Setup and Formulation

In the setting of sequential recommendation, we are given an item
set I and a user’s interaction sequence 𝑠 = {𝑖1, 𝑖2, . . . , 𝑖𝑛} in tempo-
ral order where 𝑛 is the length of 𝑠 and 𝑖 ∈ I. Based on 𝑠 , we seek to
predict the next item. In previous sequential recommendation meth-
ods, each interacted item 𝑖 is associatedwith a unique item ID. In this
paper, each item 𝑖 has a corresponding attribute dictionary 𝐷𝑖 con-
taining key-value attribute pairs {(𝑘1, 𝑣1), (𝑘2, 𝑣2), . . . , (𝑘𝑚, 𝑣𝑚)}
where 𝑘 denotes an attribute name (e.g., Color) and 𝑣 is the corre-
sponding value (e.g., Black). 𝑘 and 𝑣 are both described by natural
languages and contain words (𝑘, 𝑣) = {𝑤𝑘

1 , . . . ,𝑤
𝑘
𝑐 ,𝑤

𝑣
1 , . . . ,𝑤

𝑣
𝑐 },

where𝑤𝑘 and𝑤𝑣 are words of 𝑘 and 𝑣 from a shared vocabulary in
the language model and 𝑐 denotes the truncated length of text. An
attribute dictionary 𝐷𝑖 can include all kinds of item textual infor-
mation such as titles, descriptions, colors, etc. As shown in Figure 2,
to feed the attribute dictionary 𝐷𝑖 into a language model, we flat-
ten key-value attribute pairs into 𝑇𝑖 = {𝑘1, 𝑣1, 𝑘2, 𝑣2, . . . , 𝑘𝑚, 𝑣𝑚}
to obtain an item “sentence” as the input data. Unlike previous
sequential recommenders [12, 37] using both text and item IDs, in
this study, we use only text for the sequential recommendation.

2.2 Recformer

Figure 3 (a) shows the architecture of Recformer. The model has
a similar structure as Longformer [2] which adopts a multi-layer
bidirectional Transformer [30] with an attention mechanism that
scales linearly with sequence length. We consider only comput-
ing efficiency for using Longformer but our method is open to
other bidirectional Transformer structures such as BERT [6] and
BigBird [36].

1Code will be released upon acceptance.

2.2.1 Model Inputs. As introduced in Section 2.1, for each item 𝑖

and corresponding attribute dictionary𝐷𝑖 , we flatten the dictionary
into an item “sentence”𝑇𝑖 = {𝑘1, 𝑣1, 𝑘2, 𝑣2, . . . , 𝑘𝑚, 𝑣𝑚}where 𝑘 and
𝑣 are described bywords, formally (𝑘, 𝑣) = {𝑤𝑘

1 , . . . ,𝑤
𝑘
𝑐 ,𝑤

𝑣
1 , . . . ,𝑤

𝑣
𝑐 }.

To encode a user’s interaction sequence 𝑠 = {𝑖1, 𝑖2, . . . , 𝑖𝑛}, we first
reverse items in a sequence to {𝑖𝑛, 𝑖𝑛−1, . . . , 𝑖1} because intuitively
recent items (i.e., 𝑖𝑛, 𝑖𝑛−1, . . . ) are important for the next item pre-
diction and reversed sequences can make sure recent items are
included in the input data. Then, we use the item “sentences” to
replace items and add a special token [CLS] at the beginning of
sequences. Hence, model inputs are denoted as:

𝑋 = {[CLS],𝑇𝑛,𝑇𝑛−1, . . . ,𝑇1} (1)

where𝑋 is a sequence of words containing all items and correspond-
ing attributes the user interacted with in the historical interactions.

2.2.2 Embedding Layer. The target of Recformer is to understand
the model input 𝑋 from both language understanding and sequen-
tial patterns in recommendations. The key idea in our work is to
combine the embedding layers from language models [6, 21] and
self-attentive sequential recommenders [14, 27]. Hence, Recformer
contains four embeddings as follows:

• Token embedding represents the corresponding tokens.
We denote the word token embedding by A ∈ R𝑉𝑤×𝑑 , where
𝑉𝑤 is the number of words in our vocabulary and 𝑑 is the
embedding dimension. Recformer does not have item em-
beddings as previous sequential recommenders and hence
Recformer understands items in interaction sequencesmainly
based on these token embeddings. The size of token embed-
dings is a constant for different recommendation scenarios;
hence, our model size is irrelevant to the number of items.
• Token position embedding represents the position of to-
kens in a sequence. A word appearing at the 𝑖-th position
in the sequence 𝑋 is represented as B𝑖 ∈ R𝑑 . Similar to lan-
guage models, token position embedding is designed to help
Transformer understand the sequential patterns of words.
• Token type embedding represents where a token comes
from. Specifically, the token type embedding totally contains
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three vectors C[CLS],CKey,CValue ∈ R𝑑 to represent if a to-
ken comes from [CLS], attribute keys, or attribute values
respectively. Different types of tokens usually have differ-
ent importance for the next item prediction. For example,
because most items usually have the same attribute keys in
a recommendation dataset, models with token type embed-
ding will recognize repeated words from the same attribute
keys.
• Item position embedding represents the position of items
in a sequence. A word from attributes of the 𝑘-th item in the
sequence 𝑋 is represented as D𝑘 ∈ R𝑑 and D ∈ R𝑛×𝑑 where
𝑛 is the maximum length of a user’s interaction sequence 𝑠 .
Same as previous self-attentive sequential recommenders [14,
27], the item position embedding is a key component for item
sequential pattern learning. In Recformer, the item position
embedding can also help the model learn the alignment
between word tokens and items.

Therefore, given a word 𝑤 from the input sequence 𝑋 , the in-
put embedding is calculated as the summation of four different
embeddings followed by layer normalization [1]:

E𝑤 = LayerNorm(A𝑤 + B𝑤 + C𝑤 + D𝑤) (2)

where E𝑤 ∈ R𝑑 .
The embedding of model inputs 𝑋 is a sequence of E𝑤 ,

E𝑋 = [E[CLS], E𝑤1 , . . . , E𝑤𝑙
] (3)

where E𝑋 ∈ R(𝑙+1)×𝑑 and 𝑙 is the maximum length of tokens in a
user’s interaction sequence.

2.2.3 Item or Sequence Representations. To encode E𝑋 , we em-
ploy the bidirectional Transformer structure Longformer [2] as
our encoder. Because 𝑋 is usually a long sequence, the local win-
dowed attention in Longformer can help us efficiently encode E𝑋 .
As the standard settings in Longformer for document understand-
ing, the special token [CLS] has global attention but other tokens
use the local windowed attention. Hence, Recformer computes
𝑑-dimensional word representations as follows:

[h[CLS], h𝑤1 , . . . , h𝑤𝑙
] = Longformer( [E[CLS], E𝑤1 , . . . , E𝑤𝑙

]) (4)

where h𝑤 ∈ R𝑑 . Similar to the language models used for sentence
representations, the representation of the first token h[CLS] is used
as the sequence representation.

In Recformer, we do not maintain an embedding table for items.
Instead, we view the item as a special case of the interaction se-
quence with only one item. For each item 𝑖 , we construct its item
“sentence”𝑇𝑖 and use 𝑋 = {[CLS],𝑇𝑖 } as the model input to get the
sequence representation h[CLS] as the item representation h𝑖 .

2.2.4 Prediction. We predict the next item based on the cosine
similarity between a user’s interaction sequence 𝑠 and item 𝑖 . For-
mally, after obtaining the sequence representation h𝑠 and the item
representation h𝑖 as introduced in Section 2.2.3, we calculate the
scores between 𝑠 and 𝑖 as follows:

𝑟𝑖,𝑠 =
h⊤
𝑖
h𝑠

∥h𝑖 ∥ · ∥h𝑠 ∥
(5)

where 𝑟𝑖,𝑠 ∈ R is the relevance of item 𝑖 being the next item given 𝑠 .
To predict the next item, we calculate 𝑟𝑖,𝑠 for all items 2 in the item
set I and select item with the highest 𝑟𝑖,𝑠 as the next item:

𝑖𝑠 = argmax𝑖∈I (𝑟𝑖,𝑠 ) (6)

where 𝑖𝑠 is the predicted item given user interaction sequence 𝑠 .

2.3 Learning Framework

To have an effective and efficient language model for the sequential
recommendation, we propose our learning framework forRecformer
including pre-training and two-stage finetuning.

2.3.1 Pre-training. The target of pre-training is to obtain a high-
quality parameter initialization for downstream tasks. Different
from previous sequential recommendation pre-training methods
which consider only recommendations, we need to consider both
language understanding and recommendations. Hence, to pre-train
Recformer, we adopt two tasks: (1) Masked Language Modeling
(MLM) and (2) an item-item contrastive task.

Masked LanguageModeling (MLM) [6] is an effective pre-training
method for language understanding and has been widely used for
various NLP pre-training tasks such as sentence understanding [8],
phrase understanding [18]. Adding MLM as an auxiliary task will
prevent language models from forgetting the word semantics when
models are jointly trained with other specific tasks. For recommen-
dation tasks, MLM can also eliminate the language domain gap
between a general language corpus and item texts. In particular,
following BERT [6], the training data generator chooses 15% of the
token positions at random for prediction. If the token is selected,
we replace the token with (1) the [MASK] with probability 80%; (2) a
random token with probability 10%; (3) the unchanged token with
probability 10%. The MLM loss is calculated as:

m = LayerNorm(GELU(Wℎh𝑤 + bℎ)) (7)
𝑝 = Softmax(W0m + b0) (8)

LMLM = −
|V |∑︁
𝑖=0

𝑦𝑖 log(𝑝𝑖 ) (9)

where Wℎ ∈ R𝑑×𝑑 , bℎ ∈ R𝑑 , W0 ∈ R |V |×𝑑 , b0 ∈ R |V | , GELU is
the GELU activation function [10] andV is the vocabulary used in
the language model.

Another pre-training task for Recformer is the item-item con-
trastive (IIC) task which is widely used in the next item prediction
for recommendations. We use the ground-truth next items as posi-
tive instances following previous works [12, 14, 27]. However, for
negative instances, we adopt in-batch next items as negative in-
stances instead of negative sampling [14] or fully softmax [12, 27].
Previous recommenders maintain an item embedding table, hence
they can easily retrieve item embeddings for training and update
embeddings. In our case, item embeddings are from Recformer,
so it is infeasible to re-encode items (from sampling or full set) per
batch for training. In-batch negative instances [3] are using ground
truth items of other instance sequences in the same batch as nega-
tive items. Although it is possible to provide false negatives, false
negatives are less likely in the pre-training dataset with a large size.

2For efficient calculation, we encode all items in advance for score calculation.
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Algorithm 1: Two-Stage Finetuning
1 Input: 𝐷train, 𝐷valid, I,𝑀
2 Hyper-parameters: 𝑛epoch
3 Output:𝑀′, I′

1: 𝑀 ← initialized with pre-trained parameters
2: 𝑝 ← metrics are initialized with 0

Stage 1
3: for 𝑛 in 𝑛epoch do

4: I← Encode(𝑀,I)
5: 𝑀 ← Train(𝑀, I, 𝐷train)
6: 𝑝′ ← Evaluate(𝑀, I, 𝐷valid)
7: if 𝑝′ > 𝑝 then

8: 𝑀′, I′ ← 𝑀, I
9: 𝑝 ← 𝑝′

10: end if

11: end for

Stage 2
12: 𝑀 ← 𝑀′

13: for 𝑛 in 𝑛epoch do

14: 𝑀 ← Train(𝑀, I′, 𝐷train)
15: 𝑝′ ← Evaluate(𝑀, I′, 𝐷valid)
16: if 𝑝′ > 𝑝 then

17: 𝑀′ ← 𝑀

18: 𝑝 ← 𝑝′

19: end if

20: end for

21: return𝑀′, I′

Furthermore, the target of pre-training is to provide high-quality
initialized parameters and we have the finetuning with accurate
supervision for downstream tasks. Therefore, we claim that in-
batch negatives will not hurt the recommendation performance but
have much higher training efficiency than accurate supervision.
Formally, the item-item contrastive loss is calculated as:

LIIC = − log 𝑒sim(h𝑠 ,h
+
𝑖 )/𝜏∑

𝑖∈B 𝑒sim(h𝑠 ,h𝑖 )/𝜏
(10)

where sim is the similarity introduced in Equation (5); h+
𝑖
is the

representation of the ground truth next item; B is the ground truth
item set in one batch and 𝜏 is a temperature parameter.

At the pre-training stage, we use a multi-task training strategy
to jointly optimize Recformer:

LPT = LIIC + _ · LMLM (11)

where _ is a hyper-parameter to control the weight of MLM task
loss. The pre-trained model will be fine-tuned for new scenarios.

2.3.2 Two-Stage Finetuning. Similar to pre-training, we do not
maintain an independent item embedding table. Instead, we encode
items by Recformer. However, in-batch negatives cannot provide
accurate supervision in a small dataset because it is likely to have
false negatives which undermine recommendation performance.
To solve this problem, we propose two-stage finetuning as shown
in Algorithm 1. The key idea is to maintain an item feature matrix
I ∈ R | I |×𝑑 . Different from the item embedding table, I is not learn-
able and all item features are encoded from Recformer. As shown

in Algorithm 1, our proposed finetuning method has two stages.
In stage 1, I is updated (line 4) per epoch,3 whereas, in stage 2 we
freeze I and update only parameters in model 𝑀 . The basic idea
is that although the model is already pre-trained, item representa-
tions from the pre-trained model can still be improved by further
training on downstream datasets. It is expensive to re-encode all
items in every batch hence we re-encode all items in every epoch to
update I (line 4) and use I as supervision for item-item contrastive
learning (line 5). After obtaining the best item representations, we
re-initialize the model with the corresponding parameters (line 12)
and start stage 2. Since I keeps updating in stage 1, the supervision
for finetuning is also changing. In this case, the model is hard to be
optimized to have the best performance. Therefore, we freeze I and
continue training the model until achieving the best performance
on the validation dataset.

The learning task used in finetuning is item-item contrastive
learning which is the same as pre-training but with fully softmax
instead of in-batch negatives. The finetuning loss is calculated as:

LFT = − log 𝑒sim(h𝑠 ,I
+
𝑖 )/𝜏∑

𝑖∈I 𝑒sim(h𝑠 ,I𝑖 )/𝜏
(12)

where I𝑖 is the item feature of item 𝑖 .

2.4 Discussion

In this section, we briefly compare Recformer to other sequential
recommendation methods to highlight the novelty of our method.

Traditional sequential recommenders such as GRU4Rec [11],
SASRec [14] and BERT4Rec [27] rely on item IDs and corresponding
trainable item embeddings to train a sequential model for recom-
mendations. These item embeddings are learned from sequential
patterns of user interactions. However, as mentioned in [20], these
approaches suffer from data sparsity and can not perform well with
cold-start items.

To reduce the dependence on item IDs, some context-aware

sequential recommenders such as UniSRec [12], S3-Rec [38],
ZESRec [7] are proposed to incorporate side information (e.g., cat-
egories, titles) as prior knowledge for recommendations. All of
these approaches rely on a feature extractor such as BERT [6] to
obtain item feature vectors and then fuse these vectors into item
representations with an independent sequential model.

In this paper, we explore conducting sequential recommenda-
tions in a new paradigm that learns language representations for
the next item recommendations. Instead of trainable item embed-
dings or fixed item features from language models, we bridge the
gap between natural language understanding and sequential rec-
ommendation to directly learn representations of items and user
sequences based on words. We expect the generality of natural lan-
guage can improve the transferability of recommenders in order to
benefit new domain adaptation and cold-start item understanding.

3 EXPERIMENTS

In this section, we empirically show the effectiveness of our pro-
posed model Recformer and learning framework.

3Updating means encoding all items with Recformer.
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Table 1: Statistics of the datasets after preprocessing. Avg. n

denotes the average length of item sequences.

Datasets #Users #Items #Inters. Avg. n Density

Pre-training 3,613,906 1,022,274 33,588,165 9.29 9.1e-6
-Training 3,501,527 954,672 32,291,280 9.22 9.0e-6
-Validation 112,379 67,602 1,296,885 11.54 1.7e-4

Scientific 11,041 5,327 76,896 6.96 1.3e-3
Instruments 27,530 10,611 231,312 8.40 7.9e-4
Arts 56,210 22,855 492,492 8.76 3.8e-4
Office 101,501 27,932 798,914 7.87 2.8e-4
Games 11,036 15,402 100,255 9.08 5.9e-4
Pet 47,569 37,970 420,662 8.84 2.3e-4

3.1 Experimental Setup

3.1.1 Datasets. To evaluate the performance of Recformer, we
conduct pre-training and finetuning on different categories of Ama-
zon review datasets [22]. The statistics of datasets after preprocess-
ing are shown in Table 1.

For pre-training, seven categories are selected as training data
including “Automotive”, “Cell Phones and Accessories”, “Clothing
Shoes and Jewelry”, “Electronics”, “Grocery andGourmet Food”, “Home
and Kitchen”, “Movies and TV ”, and one category “CDs and Vinyl” is
left out as validation data. Datasets from these categories are used
as source domain datasets.

For finetuning, we select six categories including “Industrial
and Scientific”, “Musical Instruments”, “Arts, Crafts and Sewing”,
“Office Products”, “Video Games”, “Pet Supplies”, as target domain
datasets to evaluate Recformer.

For pre-training and finetuning, we use the five-core datasets
provided by the data source and filter items whose title is missing.
Then we group the interactions by users and sort them by times-
tamp ascendingly. Following previous work [12], we select item
attributes title, categories and brand as key-value pairs for items.

3.1.2 Baselines. We compare three groups of works as our base-
lines which include methods with only item IDs; methods using
item IDs and treating item text as side information; and methods
using only item texts as inputs.

(1) ID-Only methods:

• GRU4Rec [11] adopts RNNs to model user action sequences
for session-based recommendations. We treat each user’s
interaction sequence as a session.
• SASRec [14] uses a directional self-attentive model to cap-
ture item correlations within a sequence.
• BERT4Rec [27] employs a bi-directional self-attentivemodel
with the cloze objective formodeling user behavior sequences.
• RecGURU [16] proposes to pre-train sequence representa-
tions with an autoencoder in an adversarial learning para-
digm. We do not consider overlapped users for this method
in our setting.

(2) ID-Text methods:

• FDSA [37] uses a self-attentive model to capture item and
feature transition patterns.

• S
3
-Rec [38] pre-trains sequential models with mutual in-

formation maximization to learn the correlations among
attributes, items, subsequences, and sequences.

(3) Text-Only methods:
• ZESRec [7] encodes item texts with a pre-trained language
model as item features. We pre-train this method and fine-
tune the model on six downstream datasets.
• UniSRec [12] uses textual item representations from a pre-
trained language model and adapts to a new domain using
an MoE-enhance adaptor. We initialize the model with the
pre-trained parameters provided by the authors and finetune
the model on target domains.

3.1.3 Evaluation Settings. To evaluate the performance of sequen-
tial recommendation, we adopt threewidely usedmetrics NDCG@N,
Recall@N and MRR, where N is set to 10. For data splitting of
finetuning datasets, we apply the leave-one-out strategy [14] for
evaluation: the most recent item in an interaction sequence is used
for testing, the second most recent item for validation and the re-
maining data for training. We rank the ground-truth item of each
sequence among all items for evaluation and report the average
scores of all sequences in the test data.

3.1.4 Implementation Details. We build Recformer based on Long-
former implemented by Huggingface 4. For efficient computing,
we set the size of the local attention windows in Longformer to 64.
The maximum number of tokens is 32 for each attribute and 1,024
for each interaction sequence (i.e., 𝑋 in Equation (1)). The maxi-
mum number of items in a user sequence is 50 for all baselines and
Recformer. The temperature parameter 𝜏 is 0.05 and the weight
of MLM loss _ is 0.1. Other than token type embedding and item
position embedding in Recformer, other parameters are initialized
with pre-trained parameters of Longformer 5 before pre-training.
The batch size is 64 for pre-training and 16 for finetuning. We opti-
mize Recformer with Adam optimizer with learning rate 5e-5 and
adopt early stop with the patience of 5 epochs to prevent overfitting.
For baselines, we use the suggested settings introduced in [12].

3.2 Overall Performance

We compare Recformer to baselines on six datasets across different
recommendation domains. Results are shown in Table 2.

For baselines, ID-Text methods (i.e., FDSA and S3-Rec) achieve
better results compared to ID-Only and Text-Only methods in gen-
eral. Because ID-Textmethods include item IDs and content features,
they can learn both content-based information and sequential pat-
terns from finetuning. Comparing Text-Only methods and ID-Only
methods, we can find that on the Scientific, Instruments, and Pet
datasets, Text-Only methods perform better than ID-Only methods.
A possible reason is that the item transitions in these three datasets
are highly related to item texts (i.e., title, brand) hence text-only
methods can recommend the next item based on content similarity.

Our proposed method Recformer, achieves the best overall
performance on all datasets except the Recall@10 of Instruments.
Recformer improves the NDCG@10 by 15.83% and MRR by 15.99%
on average over the second best results. Different from baselines,
4https://huggingface.co/docs/transformers/
5https://huggingface.co/allenai/longformer-base-4096
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Table 2: Performance comparison of different recommendation models. The best and the second-best performance is bold and

underlined respectively. Improv. denotes the relative improvement of Recformer over the best baselines.

ID-Only Methods ID-Text Methods Text-Only Methods

Improv.

Dataset Metric GRU4Rec SASRec BERT4Rec RecGURU FDSA S
3
-Rec ZESRec UniSRec Recformer

Scientific
NDCG@10 0.0826 0.0797 0.0790 0.0575 0.0716 0.0451 0.0843 0.0862 0.1027 19.14%
Recall@10 0.1055 0.1305 0.1061 0.0781 0.0967 0.0804 0.1260 0.1255 0.1448 10.96%
MRR 0.0702 0.0696 0.0759 0.0566 0.0692 0.0392 0.0745 0.0786 0.0951 20.99%

Instruments
NDCG@10 0.0633 0.0634 0.0707 0.0468 0.0731 0.0797 0.0694 0.0785 0.0830 4.14%
Recall@10 0.0969 0.0995 0.0972 0.0617 0.1006 0.1110 0.1078 0.1119 0.1052 -
MRR 0.0707 0.0577 0.0677 0.0460 0.0748 0.0755 0.0633 0.0740 0.0807 6.89%

Arts
NDCG@10 0.1075 0.0848 0.0942 0.0525 0.0994 0.1026 0.0970 0.0894 0.1252 16.47%
Recall@10 0.1317 0.1342 0.1236 0.0742 0.1209 0.1399 0.1349 0.1333 0.1614 15.37%
MRR 0.1041 0.0742 0.0899 0.0488 0.0941 0.1057 0.0870 0.0798 0.1189 12.49%

Office
NDCG@10 0.0761 0.0832 0.0972 0.0500 0.0922 0.0911 0.0865 0.0919 0.1141 17.39%
Recall@10 0.1053 0.1196 0.1205 0.0647 0.1285 0.1186 0.1199 0.1262 0.1403 9.18%
MRR 0.0731 0.0751 0.0932 0.0483 0.0972 0.0957 0.0797 0.0848 0.1089 12.04%

Games
NDCG@10 0.0586 0.0547 0.0628 0.0386 0.0600 0.0532 0.0530 0.0580 0.0684 8.92%
Recall@10 0.0988 0.0953 0.1029 0.0479 0.0931 0.0879 0.0844 0.0923 0.1039 0.97%
MRR 0.0539 0.0505 0.0585 0.0396 0.0546 0.0500 0.0505 0.0552 0.0650 11.11%

Pet
NDCG@10 0.0648 0.0569 0.0602 0.0366 0.0673 0.0742 0.0754 0.0702 0.0972 28.91%
Recall@10 0.0781 0.0881 0.0765 0.0415 0.0949 0.1039 0.1018 0.0933 0.1162 11.84%
MRR 0.0632 0.0507 0.0585 0.0371 0.0650 0.0710 0.0706 0.0650 0.0940 32.39%

Scientific Arts Instruments Office Games Pet0.00
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Figure 4: Performance (NDCG@10) of three Text-Only meth-

ods under the zero-shot setting. Fully-Supervised denotes the

average scores of three classical ID-Only methods (i.e., SAS-

Rec, BERT4Rec, GRU4Rec) trained with all training data.

Recformer learns language representations for sequential recom-
mendation without pre-trained language models or item IDs. With
two-stage finetuning, Recformer can be effectively adapted to
downstream domains and transferred knowledge from pre-training
can consistently benefit finetuning tasks. The results illustrate the
effectiveness of the proposed Recformer.

3.3 Low-Resource Performance

3.3.1 Zero-Shot. To show the effectiveness of pre-training, we
evaluate the zero-shot recommendation performance of three Text-
Only methods (i.e., UniSRec, ZESRec, Recformer) and compare
results to the average scores of three ID-Only methods fully trained
on downstream datasets. The zero-shot recommendation setting
requires models to learn knowledge from pre-training datasets
and directly test on downstream datasets without further training.
Hence, traditional ID-based methods cannot be evaluated in this
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Figure 5: Performance (NDCG@10) of SASRec, UniSRec,

Recformer over different sizes (i.e., 1%, 5%, 10%, 50%, 100%)
of training data.

setting. We evaluate the knowledge transferability of Text-Only
methods in different recommendation scenarios. All results in six
downstream datasets are shown in Figure 4. Overall, Recformer
improves the zero-shot recommendation performance compared
to UniSRec and ZESRec on six datasets. On the Scientific dataset,
Recformer performs better than the average performance of three
ID-Only methods trained with full training sets. These results show
that (1) natural language is promising as a general item representa-
tion across different recommendation scenarios; (2) Recformer can
effectively learn knowledge from pre-training and transfer learned
knowledge to downstream tasks based on language understanding.

3.3.2 Low-Resource. We conduct experiments with SASRec, UniS-
Rec and Recformer in low-resource settings. In this setting, we
train models on downstream datasets with different ratios of train-
ing data and results are shown in Figure 5. We can see that methods
with item text (i.e., UniSRec and Recformer) outperform ID-only
method SASRec especially when less training data is available. This
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Table 3: Performance of models compared between in-set

items and cold-start items on four datasets. N@10 and R@10

stand for NDCG@10 and Recall@10 respectively.

SASRec UniSRec Recformer

Dataset Metric In-Set Cold In-Set Cold In-Set Cold

Scientific N@10 0.0775 0.0213 0.0864 0.0441 0.1042 0.0520
R@10 0.1206 0.0384 0.1245 0.0721 0.1417 0.0897

Instruments N@10 0.0669 0.0142 0.0715 0.0208 0.0916 0.0315
R@10 0.1063 0.0309 0.1094 0.0319 0.1130 0.0468

Arts N@10 0.1039 0.0071 0.1174 0.0395 0.1568 0.0406
R@10 0.1645 0.0129 0.1736 0.0666 0.1866 0.0689

Pet N@10 0.0597 0.0013 0.0771 0.0101 0.0994 0.0225
R@10 0.0934 0.0019 0.1115 0.0175 0.1192 0.0400

indicates UniSRec and Recformer can incorporate prior knowl-
edge and do recommendations based on item texts. In low-resource
settings, most items in the test set are unseen during training for
SASRec. Therefore, the embeddings of unseen items are randomly
initialized and cannot provide high-quality representations for rec-
ommendations. After being trained with adequate data, SASRec
could rapidly improve its performance. Recformer achieves the
best performance over different ratios of training data. On the Sci-
entific dataset, Recformer outperforms other methods by a large
margin with 1% and 5% of training data.

3.4 Further Analysis

3.4.1 Performance w.r.t. Cold-Start Items. In this section, we simu-
late this scenario by splitting a dataset into two parts, i.e., an in-set
dataset and cold-start dataset. Specifically, for the in-set dataset, we
make sure all test items appear in the training data and all other
test items (never appearing in training data) will be sent to the
cold-start dataset. We train models on in-set datasets and test on
both in-set and cold-start datasets. In this case, models never see the
cold-start items during training and item embedding tables do not
contain cold-start items. We compare the ID-only method SASRec
and the Text-only method UniSRec to Recformer. For ID-based
SASRec, we substitute items appearing only once in the training
set with a cold token and after training, we add this cold token
embedding to cold-start item embeddings to provide prior knowl-
edge 6. For UniSRec, cold-start items are represented by item texts
and encoded by BERT which is identical to seen items. Recformer
directly encode item texts to represent cold-start items.

Experimental results are shown in Table 3. We can see that
Text-Only methods significantly outperform SASRec, especially on
datasets with a large size (i.e., Arts, Pet). Because of randomly ini-
tialized cold-start item representations, the performance of SASRec
is largely lower on cold-start items than in-set items. Hence, ID-
only methods are not able to handle cold-start items and applying
text is a promising direction. For Text-only methods, Recformer
greatly improves performance on both in-set and cold-start datasets
compared to UniSRec which indicates learning language represen-
tations is superior to obtaining text features for recommendations.

6We try to provide a reasonable method for ID-based baselines with cold-start items.
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Figure 6: Recformer zero-shot recommendation perfor-

mance (NDCG@10 and Recall@10) over different pre-

training steps.

3.4.2 Ablation Study. We analyze how our proposed components
influence the final sequential recommendation performance. The
results are shown in Table 4. We introduce the variants and analyze
their results respectively.

We first test the effectiveness of our proposed two-stage fine-
tuning. In variant (1) w/o two-stage finetuning, we do not update
item feature matrix I and only conduct finetuning based on I from
pre-trained parameters. We find that compared to (0) Recformer,
(1) has similar results on Scientific but has a large margin on Instru-
ments since the pre-trained model has better pre-trained item rep-
resentations on Scientific compared to Instruments (shown in Fig-
ure 4). Hence, our proposed two-stage finetuning can effectively
improve the sub-optimal item representations from pre-training
and further improve performance on downstream datasets.

Then, we investigate the effects of freezing/trainable word em-
beddings and item embeddings. In our default setting (1), we freeze
the item feature matrix I and train word embeddings of Recformer.
In variants (2)(3)(4), we try to train the item feature matrix or freeze
word embeddings. Overall, on the Scientific dataset, the model with
fixed item embeddings performs better than the model with train-
able item embeddings, whereas on the Instruments dataset, our
model performs well when item embeddings are trainable. The
divergence can be eliminated by our two-stage finetuning strategy.

Variant (5) w/o pre-training finetunes Recformer from scratch.
We can see that (0) Recformer significantly outperforms Variant
(5) in both datasets because without pre-training, the item feature
matrix I is not trained and cannot provide informative supervision
during finetuning even if we update I by two-stage finetuning.
These results show the effectiveness of pre-training.

Finally, we explore the effectiveness of our proposed model struc-
ture (i.e., item position embeddings and token type embeddings).
Variant (6) removes the two embeddings and results show that the
model in (6) causes performance decay on the instruments dataset
which indicates the two embeddings are necessary when the gap
between pre-training and finetuning is large.

3.4.3 Pre-training Steps vs. Performance. We investigate the zero-
shot sequential recommendation performance on downstream tasks
over different pre-training steps and results on four datasets are
shown in Figure 6. The pre-training of natural language understand-
ing usually requires a large number of training steps to achieve
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Table 4: Ablation study on two downstream datasets. The best and the second-best scores are bold and underlined respectively.

Variants

Scientific Instruments

NDCG@10 Recall@10 MRR NDCG@10 Recall@10 MRR

(0) Recformer 0.1027 0.1448 0.0951 0.0830 0.1052 0.0807

(1) w/o two-stage finetuning 0.1023 0.1442 0.0948 0.0728 0.1005 0.0685
(1) + (2) freezing word emb. & item emb. 0.1026 0.1399 0.0942 0.0728 0.1015 0.0682
(1) + (3) trainable word emb. & item emb. 0.0970 0.1367 0.0873 0.0802 0.1015 0.0759
(1) + (4) trainable item emb. & freezing word emb. 0.0965 0.1383 0.0856 0.0801 0.1014 0.0760

(5) w/o pre-training 0.0722 0.1114 0.0650 0.0598 0.0732 0.0584
(6) w/o item position emb. & token type emb. 0.1018 0.1427 0.0945 0.0518 0.0670 0.0501

a promising result. However, we have a different situation in se-
quential recommendation. From Figure 6, we can see that most
datasets already achieve their best performance after around 4,000
training steps and further pre-training may hurt the knowledge
transferability on downstream tasks. We think there are two possi-
ble reasons: (1) We initialize most parameters from a Longformer
model pre-trained by the MLM task. In this case, the model already
has some essential knowledge of natural languages. The domain
adaptation from a general language understanding to the item text
understanding for recommendations should be fast. (2) Even if we
include seven categories in the training data, there is still a language
domain difference between pre-training data and downstream data
since different item categories have their own specific vocabularies.
For instance, the category Electronics has quite different words in
item text compared to the Pets category.

4 RELATEDWORK

4.1 Sequential Recommendation

Sequential recommendation [11, 14, 27] aims to predict the next
item based on historical user interactions. Proposed methods model
user interactions as a sequence ordered by their timestamps. Due
to the ability to capture the long-term preferences and short-term
dynamics of users, sequential recommendation methods show their
effectiveness for personalization and attract a lot of studies. Early
works [9, 25] apply the Markov Chain to model item-item tran-
sition relations based on matrix factorization. For deep learning
methods, Convolutional Sequence Embedding (Caser) [28] views
the embedding matrix of previous items as an “image” and ap-
plies convolutional operations to extract transitions. GRU4Rec [11]
introduces Gated Recurrent Units (GRU) [5] to model user sequen-
tial patterns. With the development of the Transformer [30], re-
cent studies [14, 27] widely use self-attention model for sequential
recommendation. Although these approaches achieve promising
performance, they struggle to learn transferable knowledge or un-
derstand cold-start items due to the dependence on IDs and item
embeddings which are specific to items and datasets. Recently, re-
searchers attempt to employ textual features as transferable item
representations [7, 12]. These methods first obtain item features by
encoding item texts with language models and then learn transfer-
able item representations with an independent sequential model.
Independent language understanding and sequential pattern learn-
ing still limit the capacity of the model to learn user interactions
based on languages. In this paper, we explore unifying the language

understanding and sequential recommendations into one Trans-
former framework. We aim to have a sequential recommendation
method that can effectively model cold-start items and learn trans-
ferable sequential patterns for different recommendation scenarios.

4.2 Transfer Learning for Recommendation

Data sparsity and cold-start item understanding issues are chal-
lenging in recommender systems and recent studies [33, 39, 40]
explore transferring knowledge across different domains to improve
the recommendation at the target domain. Previous methods for
knowledge transfer mainly rely on shared information between the
source and target domains including common users [13, 31, 32, 35],
items [26, 39] or attributes [29]. To learn common item features
from different domains, pre-trained language models [6, 21] pro-
vide high-quality item features by encoding item texts (e.g., title,
brand). Based on pre-trained item features, several methods [7, 12]
are proposed to learn universal item representations by applying
additional layers. In this work, we have the same target as previous
transfer learning for recommendation (i.e., alleviate data sparsity
and cold-start item issues). However, instead of relying on com-
mon users, items and attributes or encoding items with pre-trained
language models, we directly learn language representations for
sequential recommendation and hence transfer knowledge based
on the generality of natural languages.

5 CONCLUSION

In this paper, we propose Recformer, a framework that can effec-
tively learn language representations for sequential recommenda-
tion. To recommend the next item based on languages, we first
formulate items as key-value attribute pairs instead of item IDs.
Then, we propose a novel bi-directional Transformer model for se-
quence and item representations. The proposed structure can learn
both natural languages and sequential patterns for recommenda-
tions. Furthermore, we design a learning framework including pre-
training and finetuning that helps the model learn to recommend
based on languages and transfer knowledge into different recom-
mendation scenarios. Finally, extensive experiments are conducted
to evaluate the effectiveness of Recformer under full-supervised
and low-resource settings. Results show that Recformer largely
outperforms existing methods in different settings, especially for
the zero-shot and cold-start items recommendation which indi-
cates Recformer can effectively transfer knowledge from training.
An ablation study is conducted to show the effectiveness of our
proposed components.
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